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Abstract. The low-temperature expansion of the checkerboard Potts model in a magnetic 
field is obtained up to order twelve from the so-called disorder solutions, various expansions 
and results known in the literature. It is shown that this expansion drastically simplifies 
on the dual of the disorder variety. The low-temperature expansion of the magnetisation 
is seen to become equal to one (up  to order twelve) when it is restricted to the dual of the 
disorder variety. These results have to be seen as exact formal constraints on the analytic 
continuation of the low-temperature expansion of the partition function per site. Similar 
simplifications occur for the susceptibility and higher derivatives with respect to the 
magnetic field. These expansions are also analysed in the vicinity of these particular 
varieties. 

1. Introduction 

Very few anisotropic low- or high-temperature expansions have been obtained for 
models in statistical mechanics on lattices. One apparent reason for this fact is that, 
as far as we are concerned with critical behaviour of these models, universality strongly 
supports the idea that no difference exists between isotropic and anisotropic models. 
On the other hand, combinatorics is much more involved for anisotropic models than 
for isotropic ones. However, recent developments in exactly solvable models have 
emphasised the important role played by anisotropic models (Baxter 1982). Moreover 
expansions in the vicinity of the disorder solutions have been seen to exhibit many 
remarkable features (rational or algebraic expressions, etc) (Georges er a1 1986a, b). 

We will focus in this paper on the expansion of the checkerboard Potts (or Ising) 
model (eventually in  a magnetic field) because it is an important model in two- 
dimensional statistical mechanics for which a great number of exact results or 
expansions (even anisotropic one) have been accumulated. By taking some appropriate 
limit one can recover from the expansion of the checkerboard Ising or Potts models 
the expansions of the triangular, honeycomb, square and anisotropic square models 
that are already known in the literature up to different orders (Utiyama 1951, Kihara 
et a1 1954, Straley and Fisher 1973, Sykes et a1 1973). 

Section 2 of the paper synthesises most of the information on expansions already 
known in the literature to obtain the low-temperature expansion of the checkerboard 
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Potts model in a magnetic field. We also systematically use the constraints that stem 
from all the exact results known on the partition function or the correlation functions 
when the model has no magnetic field and is restricted to the (dual of the) disorder 
varieties. Of course, the low-temperature expansion obtained in this way up to order 
twelve will be checked by exhibiting exhaustively the corresponding diagrams. Such 
a low-temperature expansion for the checkerboard Potts model in a magnetic field will 
be used in 0 3 to analyse systematically the simplifications occurring on the magnetisa- 
tion, susceptibility (and higher field derivatives) when the model without magnetic 
field is restricted to the dual of the disorder variety. It will be conjectured that the 
magnetisation actually becomes equal to one on the dual of the disorder variety. In 
the vicinity of these varieties the expansion will also be seen to simplify drastically. 

2. Low-temperature expansion of the q-state checkerboard Potts model 
in a magnetic field 

The partition function per site Z of the q-state checkerboard scalar Potts model in a 
magnetic field is given by 

( a, b, c, d ; h ) = n a n bSu,-ui n c s ‘ ~ ~ u ~  d s‘rur n h sum,o. (1) 
{U) ( V )  ( J k )  (k l )  (11) m 

Here a, b, c and d denote the four parameters: a = eKi, b =e%, c = eK3 and d = eK4 
where K ,  ( i  = 1 , 2 , 3 , 4 )  are the four coupling constants of the model (see figure 1 )  and 
h = e H  where H is the magnetic field. Each of the N spins U, of the lattice belongs 
to Z, and the ordered sequences (U), ( j k ) ,  ( k l )  and (li) denote the edges of the N 
plaquettes. 

The low-temperature expansion of the partition function per site gives the expression 
of the (low-temperature) normalised partition function per site defined by 

Z ( a ,  b, c, d ;  h )  = (abcdh*)”’A(a, b, c, d ;  h ) .  ( 2 )  

K ,  KP 

K l  K3 

Figure 1. The elementary cell for the checkerboard Potts model. 

2.1. The low-temperature expansion 

The parameters of the low-temperature expansion of the checkerboard Potts model 
will be denoted A = l / a ,  B = l / b ,  C = l / c ,  D = l / d  and z = 11 h. The order 6 of each 
diagram appearing in the expansion is the number of bonds of the diagram. The first 
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terms of In ‘2 are given by 
In ,2(A, B, C, D ;  z )  = 

( q - l ) z A B C D  ( 6 = 4 )  
0 + i ( q -  l ) z2 (A2B*C2+A2B2D2+A*C2D2+ B 2 C 2 D 2 )  ( 8 = 6 )  
177 +$( q- l ) (q -2 ) z2 (AB2C2D2+A2BC2D* 

+A*B*cD~+ A*B*C*D) ( 6 = 7 )  

+ . . . .  ( 3 )  
This expansion is given exhaustively up to order twelve ( 6  = 12) in the appendix and 
the corresponding diagrams are detailed. Note that the exponent of z in this expansion 
is simply given by the total area of the corresponding diagram and that for convenience 
the diagrams are represented as high-temperature diagrams instead of low-temperature 
ones. 

One remarks that this expansion is not only invariant under the group of symmetry 
of the square C4v as it should be, but is also invariant under the full group of permutation 
of the four coupling constants S4. This confirms the existence of this unexpected 
hidden symmetry on the checkerboard Potts model (Maillard and Rammal 1985). 

One can easily verify that this expansion is in agreement with the different 
expansions known in the literature on various lattices. For instance, in the limit 
A = B = C = D one recovers, up to order twelve, the low-temperature expansion of 
the isotropic q-state Potts model on a square lattice in a magnetic field given by Straley 
and Fisher (1973). For q = 2, in the limit A = B = C, D = 0, one recovers the low- 
temperature expansions up to order twelve for the isotropic triangular Ising model in 
a magnetic field (Sykes et a1 1973). For q = 2 ,  in the limit A = B = C, D = 1 ,  one 
recovers, up to order seven, the low-temperature expansion for the isotropic honeycomb 
lattice in a magnetic field for the ( q = 2 )  Ising model (Sykes et a1 1973). Note that 
diagrams of order greater than twelve contribute at order lower than twelve in the 
limit D = 1. That is why the expansion for the honeycomb lattice deduced from our 
expansion works only up to order seven. 

The low-temperature expansion of the magnetisation for q = 3 on the triangular 
isotropic lattice (Enting 1980) is also in agreement with the expansion of the appendix. 

An interesting simple limit of this expansion in a magnetic field is obtained by 
requiring that two of the four coupling constants of the model vanish. In this limit 
the partition function per site of the checkerboard model reduces to that of a one- 
dimensional Potts model in a magnetic field that can be calculated very easily. One 
obtains 

(4) In A ( A ,  B, 1 ,  1 ;  z )  =In A(A, B ;  z )  
where A is a solution of a second-order algebraic equation: 
O =  A’- A {  1 + 2 ( q  - 1 ) A B z  + [ 1 + ( 4  - 2 ) A ] [ l +  ( 4  - 2 ) B ] z 2 )  

+ ( 1  - A ) [ l  + ( q  - 1)A](1- B ) [ 1  + ( q  - l ) B ] z Z .  ( 5 )  
The expansion of In A for A = B gives 

A4 
[(2q’- 9q2+ 14q - 7 ) ~ ’ +  ( -3q2+ 6 q  - 3 ) z 2 ]  + 

( 1  - z ) 3  

+. . 
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One verifies that the expansion of (4) up to order four in (A, B) and order three in z 
is in agreement with the limit of expansion (3)  for C = D = 1 and A = B. 

Other limits on the model give only rather weak constraints on the expansion. For 
instance, the low-temperature expansion has to satisfy the following equation corre- 
sponding to the two different limits of the anisotropic square model from the checker- 
board one: 

In A(A, B, A, B; z’) = 2 In A(A, B, 0, 1 ;  z ) .  ( 6 )  

2.2. Agreement with (the dual of) the disorder solutions 

In the absence of the magnetic field the model is self-dual. Therefore the low- 
temperature expansion of In A and the high-temperature expansion of the correspond- 
ing normalised partition function are the same. The high-temperature expansions of 
the checkerboard Potts model without magnetic field can be seen to agree with the 
exact results for the partition function (Baxter 1984, Jaekel and Maillard 1985) and 
the nearest-neighbour correlation functions (Dhar and Maillard 1985) when the model 
is restricted to the disorder varieties. This means that the low-temperature expansions 
also simplify drastically on the dual of the disorder varieties. 

The results are actually as follows. Restricted to the dual of the disorder variety 

D+ ABC + ( 4  - 2)ABCD = O  (7 )  

In A is equal to 

In A(A, B, C, D ;  1 )  = f  ln[l + ( q  - l )ABCD]=; In 1 - ( :P+Td2:;;) 
and 

and also 

These varieties do not lie in the physical domain. For that reason (8)-( 10) have to be 
seen as formal constraints on the analytic continuation (to non-physical domain of 
the parameters) of the low-temperature expansion of the partition function per site. 

The two previous partial derivatives are related to nearest-neighbour correlation 
functions that can be calculated when restricted to the disorder variety (or formally 
to its dual). Because of the S ,  symmetry of permutation of the coupling constants 
there is no difference between the partial derivatives with respect to A, B or C. 

From a diagrammatic point of view it is possible to shed some light on the 
simplification of the expansion. For any diagram each bond D can (in general) be 
replaced by three bonds or four bonds (see figure 2). 
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( 1 - M ) = z - 1 n A ( A, B, C, D ; z ) 
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Figure 2. A generic diagram and its two diagrams associated under the disorder (dual of 
the disorder) condition. 

Thus most of the diagrams of order 6 can be associated with two other diagrams 
of order 6 + 2 and 6 + 3, such that the sum of these three contributions vanishes when 
condition (7) is satisfied. 

These three equations are constraining enough to try to obtain the lowest orders 
of the low-temperature expansion of In A order by order. Let us consider the expansion 
of In A up to order eight. In this expansion one has two terms: f ( q  - 1)A2B2D2 and 
( q  - l )A3B3CD.  When one restricts the parameter space to the dual of the disorder 
variety ( 7 )  In A must be equal to the expansion of (8). For equation (8) (and also (9) 
and (10)) to be verified requires the existence of a certain number of counterterms of 
higher orders. Actually at this order the counterterm is f ( q  - l ) A 4 B 4 C 2 .  Unfortunately 
the counterterms are not always unique as in the previous example. For instance a 
term such as A"BPCY can come from A"-8BBp-sCy-bD8 for different values of 6. 
Most of the time this ambiguity can be avoided by using some complementary informa- 
tion (known isotropic expansions, quick examination of some classes of diagrams, etc). 

Although not completely systematic, this approach is powerful enough to obtain 
many of the contributions of the checkerboard low-temperature series. Indeed we 
have used this approach for computing most of the diagrams up to order twelve. 
Moreover, one finds the surprising result that, although our expansion is truncated at 
order twelve, it actually satisfies equations (8)-( 10) respectively up to order thirteen, 
fourteen and fourteen in A, B, C. This means that no new constraints and new 
counterterms can be obtained at order thirteen from disorder solutions. 

3. Analysis of the expansion of the checkerboard model in a magnetic field 

3.1. Analysis of the expansion on the dual of the disorder variety 

The low-temperature expansions of the magnetisation, the susceptibility (and higher 
field derivatives) at zero magnetic field can be obtained straightforwardly up to order 
twelve from expansion (3) by differentiation with respect to the variable z at z = 1 .  
Let M denote the spontaneous magnetisation of the checkerboard Potts model. One 
has 

= ( q -  1)ABCD+(q-1)(B2C2D2+S4symmetry terms) 

+ ( 4  - I ) (  q - 2 ) ( A B 2 C 2 D 2  + . . .). 
In the case of the checkerboard king model the spontaneous magnetisation has been 
calculated exactly (Syozi and Naya 1960a, b) and the result is quite simply expressed 
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in terms of the modulus of the elliptic functions that occur in the model 

M = ( 1  - k’)”’. ( 1 2 )  

It has also been remarked that this modulus trivialises on the disorder condition and 
also on its dual (Jaekel and Maillard 1984). Actually the modulus k 2  vanishes when 
condition ( 7 ) ,  for q = 2 ,  is satisfied: 

( 1 3 )  

Generalisation of this result for arbitrary q is a quite natural question. Indeed one 
can verify that, when condition ( 7 )  is satisfied, expansion ( 1 1 )  vanishes up to order 
twelve. Therefore we conjecture the following result on the low-temperature expansion 
of the spontaneous magnetisation: 

( 1 4 )  

D + ABC = 0 =$ k’ = 0 J M  = 1 .  

D + A B C  + ( q  - 2 ) A B C D z O  J M  = 1 .  

Expansions of higher derivatives with respect to the magnetic field have also been 
calculated and drastic simplifications of these expansions have been obtained when 
one assumes ( 7 ) :  

+ ( q  - 1)(A2B4C4+ S, sym) + ( q  - I ) (  q - 2 ) (  A 3 B 4 C 4 + .  . .) 
+ (9 - 1 ) (  - 2 ) (  - 4 ) ( A B C ) 4 + .  . . 

( z ; ) ~  In AI 
= 3 ( q  - 1 ) A 2 B 2 C 2 - 3 ( q  - l ) ( q  - 2 ) A 3 B 3 C 3  

z = 1 , ( 7 )  

+ 9 ( q  - 1)(A2B4C4+ S3 sym) + 9(q  - l ) ( q  - 2 ) ( A 3 B 4 C 4 + .  . .) 

+3(q- l ) (q2-12q+22)A4B4C4+.  . . . (16)  
Equation (14)  is not easy to prove rigorously, particularly because the algebraic variety 
( 7 )  lies in a non-physical region of the parameter space. However, one can heuristically 
understand this conjecture. This amounts to performing a duality transformation on 
the model and, using a decimation procedure described elsewhere (Jaekel and Maillard 
1985, Dhar and Maillard 1985), to ‘eat’ the dual lattice from the top and the bottom 
(assuming that this dual lattice satisfies appropriate boundary conditions) so that the 
magnetisation reduces to a calculation on a finite lattice. 

The same method can in principle be used to calculate exactly the susceptibility 
and higher derivatives with respect to z of In A(z)  restricted to ( 7 ) .  This decimation 
suggets that some of these expressions could be rational expressions on ( 7 ) .  

3.2. Analysis of the expansion without magnetic jield in the vicinity of’ the dual of the 
disorder variety 

Let us first briefly recall the analysis of the vicinity of the disorder variety of the 
anisotropic triangular Ising model (Georges et a1 1986a, b). The expansion of the 
high-temperature normalised partition function per site of the triangular Ising model 
without magnetic field is at first order in the vicinity of the disorder variety t ,  + t l  t2 = 0 
( t ,  = tanh K ,  are the high-temperature (HT) variables for the model) as follows: 
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Remarkably all the coefficients of higher order in f 3  + t ,  t2 are algebraic expressions of 
t ,  and t2. 

These expansions can simultaneously be seen as expansions in the vicinity of the 
dual of this disorder variety (C  +AB = 0) of the low-temperature expansion for the 
normalised partition function of the honeycomb lattice: 

In A(A, B, C, 1 ;  l)i,=2 = + In( 1 + ABC) + AB( C + A B ) (  1 + ABC)-’ + . . . . (18) 

In the case of the q-state checkerboard Potts model, the analysis of the vicinity of the 
dual of the disorder variety (7 )  can be performed using expansion (3 )  for z = 1. This 
amounts to rewriting expansion (3) as 

In A(A, B, C, D ;  1 )  = 4 In[ 1 + ( q  - l)ABCD]+ 
m 

al[D + ABC + ( q  - 2)ABCDl’. (19) 

This analysis is of course at the same time the analysis of the vicinity of the disorder 
varieties when A, B, C, D are seen as high-temperature variables. The first-order term 
is known exactly. a ,  is nothing but the nearest-neighbour correlation function (10): 

a1 = 

I =  1 

-( q - 1 )[ 1 + +( q - 2) 03 D 
[ 1  + ( q  - 1 ) 0 1 [ 1  +(q-2)D1(1-  D )  

= ( 4  - l)ABC[l +;(q -2)ABC + ( 4 -  1)2A2B2C2+. . . I .  (20) 

The following expansion has been obtained for a2: 

a2 = ( q  - 1 )( q - 2)( q - 3)(A4B4C2 + S ,  sym) + ( q  - 2)( q - 1 )( A4B4C + . . .) 
+4(q - l ) (A4B4+.  . .) - 3 ( q  - 1)’(q -2)A3B3C3 

+ ( q - 1 ) 2 ( q - 2 ) ( ~ 3 B 3 c 2 + .  . .) 
+ ( q - 1 ) ( q - 2 ) ( A 3 B 3 C + .  . . ) -+(4-1) (5q-7)A 2 2 2  B C 

+ f ( q - 2 ) ( 9  - 1)(A2B2C+.  . . )+&(q  - l ) ( A 2 B 2 + .  . .). (21) 

These expansions are simple. The cy, can be obtained exactly for q = 2. It would 
be interesting to have their exact expressions for arbitrary q. 

With the same motivation, it is interesting to consider the expansion of the magneti- 
sation in the vicinity of the algebraic variety (7). If the conjecture (14) is true then 
one has 

s 
A4 = 1 + PI[ D + ABC + ( 4  - 2)ABCDl’. 

I =  1 

We have obtained the following simple expansion for P1: 
P I  = ( 4  - l)ABC[l + (A2B2C +. . .) - 2(q -2)A2B2C2+ (A2B2C4+.  . .) 

+qq - ~ ) ( A ~ B ~ c ~  + . . .) + . . .I. (23) 

Let us come back to the honeycomb (triangular) Ising model. In expansion (18) 
the variety C + AB = 0 is singled out. Similar results for the vicinity of the two other 
varieties A + BC = 0 and B + AC = 0 can be synthesised in the following way: 

( A +  B C ) ( B  + AC)( C + AB) 
lnA(A, B, C, 1 ;  l ) = $ l n ( l + A B C ) +  +. * .  

( 1  -A2)(1 -B2)(1 - C2) 
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One recovers expansion (18) for the vicinity of the variety C + A B  = 0 from expansion 
(24). The symmetry of permutation of the three variables A, B and C is explicit on 
expansion (24). 

One would like to generalise this simultaneous expansion in the vicinity of all the 
disorder varieties to the case of the q-state checkerboard Potts model, i.e. to find a 
function F ( A ,  B, C, D) such that 

In A(A, B, C, 0, 1) = f In[ 1 + ( q  - 1)ABCDI 

+ F ( A ,  B, C, D )  n ( D + A B C + ( q - 2 ) A B C D ) + .  

where n ( .  . .) denotes the product over the four duals of the disorder varieties. The 
expansion of F is actually very simple: 

F = i (q  -1)[1 +(A2B2+.  . . ) + ( q  -2)(AB2C2+.  . . ) + ( q  -1)(A2B2CZ+. . .) 
+( A4B4 + . . .) - (4  - 2),(A3B3 C2 + . . .)I. (26) 

One remarks that for q = 2 (26) is in agreement with equation (24). It can be interesting 
to compare expansion (3) ,  given in the appendix up to order twelve, and expansion 
(26). The four coefficients of F are sufficient to recover almost two thirds of the 
coefficients of expression (3) .  

4. A comment on the susceptibility of the anisotropic Ising model 

Disorder solutions (respectively their dual) have been seen to play an important role 
in understanding and analysing the high (respectively low) temperature expansions 
on the checkerboard Potts model. One would like to understand more clearly the limit 
of such an approach. For instance, let us suppose that for a certain quantity one can 
exhibit a closed expression in agreement with the disorder solutions with all the limits 
that can be calculated exactly (one-dimensional limits, etc), with all the symmetries 
of the model (symmetries of permutation of the coupling constants, inversion reiation, 
duality, etc) and, of course, in agreement up to a certain order, with the anisotropic 
expansions available on the model. If such a closed expression is not the exact one, 
is it possible to characterise the discrepancy with the exact value of this quantity? In 
particular one might wonder if such a closed expression could present the same 
singularity as the exact one. To shed some light on this question let us consider the 
example of the susceptibility of the anisotropic triangular Ising model and its 
anisotropic high-temperature expansion. 

Using symmetry properties of the Ising model (star-triangle relation, duality trans- 
formation, symmetry of permutation of the coupling constants, etc), the one- 
dimensional limits and the anisotropic high-temperature expansions, Syozi and Naya 
(1960a) proposed a closed expression for the susceptibility of the triangular Ising model: 

M * 2  
(1 - t:)( 1 - t i ) (  1 - t:, 

= (1  - I, - t, - t3 - t i t 2 -  t 2 t 3 -  t i t , +  t l t 2 t 3 ) 2  

where 

Note that M *  is nothing else but the magnetisation of the triangular Ising model for 
which the low-temperature variables have been replaced by the high-temperature ones. 
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Actually expression (27) reduces to the exact result of Dhar and Maillard (1985) 
for the susceptibility restricted to the disorder condition: 

r3  + r ,  r 2  = 0 (29) 

The closed expression (27) is singular on the critical variety of the model and has 
actually the correct critical exponent y = :. Equation (27) is obviously related to the 
Rushbrook (1963) identity on the exponents in the Ising limit (a = 0): 

- y  = 2 p  - 2 +  a. 

x(tl, t 2 ,  r 3 ) + X ( - f l ,  - t2 ,  1/ t3)=0.  

(31) 

This expression satisfies the inversion relation (Jaekel and Maillard 1985) 

(32) 

Moreover, one can compare, in the anisotropic square limit ( r3  = 0), the expansion of 
(27) in the variables t2 with the exact resummed high-temperature expansion (well 
suited for the analysis of the inversion relation) for the susceptibility of the king 
model. The expansion of (27) is: 

1 + r l  ( 1  + c , ) ~  + r 2  1 +6r, +8r:+6t:+ r ;  

1-21; 

+2r: + . . . .  (33) 

1 + 8 t l  + 10t:+8r:+ t :  
x=-+2tz - + r :  

1 - t i  1 - f ,  ( 1  - t 1 ) 3 ( 1  + t i )  ( 1  - 

t 8 +  14r:+56tf+122r:+ 146tt+122r:+56t:+ 14t,+1 
( 1  - t l ) s ( l +  

t 8 +  16r:+64t:+ 144t:+ 166t:+ 144t:+64f:+ 161, + 1 
( 1  - r l ) 6 ( 1  + 1,) ’  

All the terms of (33) of order less than four in t 2  are in agreement with the exact 
resummed high-temperature expansion for x (Jaekel and Maillard 1985, Hansel er a1 
1987). The coefficient of r ;  is not the correct one as can be shown on its expansion 
in powers of t , .  However, it is very close to the exact result. Indeed, it leads to an 
exact coefficient for t ; t ;  ( 0 s  n ~ 4 )  while it gives 14416 t t t:  instead of 14424 t t r :  for 
the exact high-temperature expansion up to order eleven (Oitmaa 1987). Surprisingly 
enough the coefficient of r :  in (31 )  is exact (Hansel er a1 1987). 

Therefore this closed expression is not the exact expression for x: the expansions 
of both expressions are different at order six in t , ,  t , ,  f 3 .  For simplicity let us consider 
the isotropic limit of the model. It is illuminating to compare the expansion of (27) 
with the exact isotropic high-temperature expansion for x which is known up to order 
sixteen (Sykes er a1 1972). They are obviously not very different: for instance the 
coefficient of order sixteen is 10961 531 202 instead of the exact coefficient 
10 969 820 358. The relative error is 7 x Let us remark after Syozi and Naya 
(1960a, b) that the amplitude of the singularity has very good agreement with the 
amplitude deduced from expansions (A, = 0.9235 instead of 0.924 21 f 0.000 03 (Gaunt 
and Guttmann 1974, Guttmann 1976)), but it is definitely different from the exact 
amplitude. 

Coming back to the case of the anisotropic square king model it is possible to 
analyse more precisely the discrepancy between Syozi and Naya’s closed-form 
expression and the exact expression for the susceptibility. Actually Wu et a1 (1976) 
have obtained explicit analytic results for the zero-field susceptibility in the scaling 



222 D Hansel and J M Maillard 

limit. Above the critical temperature equation ( 7 . 4 5 ~ )  of Wu er a1 (1976) shows that 
the expression of Syozi and Naya is actually the full one-particle-excitation part of 
the susceptibility (ignoring three-particle, five-particle, etc, contributions (Tracy and 
McCoy 1975)). 

This example shows that it is possible to exhibit closed expressions in agreement 
with the symmetries of the model (inversion relation, permutation of the coupling 
constants, etc) but also in agreement with the exact expressions on very different 
domains of the parameter space: high temperature, critical variety, dual of the disorder 
variety, one-dimensional limits, etc. When such a closed expression can be found it 
has been seen that, from many points of view, it can hardly be distinguished from the 
exact one. It would be interesting to analyse more precisely the discrepancy between 
such closed expressions and  the exact one (many-particle contributions) and of course 
to apply these ideas to models that are not exactly solvable. 

The triangular Potts model is obviously a good candidate to generalise these ideas. 
It is not an exactly solvable model (except at  criticality) but it presents many remarkable 
features; the critical variety and the critical exponents of the model are known exactly 
(see Wu (1982) and Rammal and Maillard (1983) for instance) and there exist disorder 
solutions and inversion relation symmetries on these models. Of course one cannot 
expect a simple closed algebraic expression such as (28) for the magnetisation M *  
but one can expect that the susceptibility ,y could satisfy, with the magnetisation M* 
and a quantity related to the thermal exponent a, an  equation of state associated with 
the Rushbrook identity. This would sum up  the ideas we have tried to promote in this 
paper; the expansions simplify drastically on the dual of the disorder solutions and  it 
can be interesting to introduce a variable that synthesises these simplifications and all 
the exact properties of the model. Actually the analytic continuation of the low- 
temperature expansion of the magnetisation formally reduces to a constant on the dual 
of the disorder varieties (conjecture (14)), it vanishes on the critical variety, it is 
invariant under the symmetry of permutation of the coupling constants and it is also 
invariant under the inversion relation for the model (these symmetries generate an 
infinite discrete group, see Jaekel and Maillard (1984)). The situation we describe 
amounts to saying that ‘most’ of the complexity of the problem would be taken into 
account by introducing an appropriate variable, for instance the order parameter M*. 
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Appendix 

The low-temperature expansion of the normalised partition function per site for the 
checkerboard Potts model in a magnetic field up  to order twelve in the low-temperature 



q-state checkerboard Pa t s  model 

variables A, B, C and D is given by 

0 
0 
m 

a 
O+10 

In ..\(A, B, C, D ;  z )  = 

(9 - 1)zABCD 

+ ; ( q - l ) z " B ' C % 2 + . . . )  

+ ; (q  - 1 ) (  q - 2)z ' (AB2C'D2+.  . .) 

+ ( q -  1)z3 (A3B3CD+ . . . )  

+( - l )z4A2B2C'D2 

- : (q  - 1)2z2A2B2C2D'  

+ ( q - 1 ) ( q - 2 ) z 3 ( A 3 C 3 B D 2 + .  . .) 

+ ( q - l ) ( q - 2 ) ' z 3 ( A 3 C 3 B 2 D 2 + .  . .) 

+ ( q - l ) ( q - 2 ) z 4 ( A 2 B 2 C 3 D 3 + .  . .) 

-4 (q - - i ) ' z3 (A3B3C3D+.  . .) 

+ f ( q - 1 ) z 6 ( A 4 B 2 C 2 D 2 + .  . .) 

+ 2 ( q -  1 ) Z 5 ( ~ 3 ~ 3 ~ 3 ~ + .  . .) 

+ i ( q - l ) z 4 ( A 4 B 4 C 2 + .  . .) 

+ 3 ( q  - I ) z ~ ( A ~ B * c ~ D * + .  . .) 
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( 6 = 4 )  

( 1 9 = 6 )  

( 6 = 7 )  

( 6 = 8 )  

( 6 = 9 )  

( 8 = 1 0 )  

m) -4(q- l ) ' (q-2)z3(A2B3C3D3+.  . .) (6= 1 1 )  

+ ( q - l ) ( q - 2 ) ( q - 3 ) z 4 ( A 3 B 3 C 3 D 2 + .  . .) 

% + /l + ( q -  1) (q -2 )z4 (A4B4C2D+ . . . )  

+ + $ ( q -  i ) ( q - 2 ) z 4 ( A J B 4 C 3 +  . . . I  

fl + ( q  - l ) ( q  - 2 ) z 5 ( A 3 B 3 C 3 D ' + .  . .) 
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+(q- l ) (q -2 ) (q ’ -5q+7)z4A3B3C3D3 ( a =  1 2 )  H 
9 + m 1  + ( q -  l ) ( q - 2 ) 2 ~ 4 ( A 4 B 4 C 3 D + . . . )  

1-1 + + ( q - i ) ( q - 2 ) 2 ~ 4 ( A 4 B 4 C 2 D 2 + .  . .) 

+3(q-  l ) ( q - 2 ) 2 ~ 4 ( A 3 B 3 C 4 D 2 + .  . .) 

(0 0 17) + y ( q  - 1 ) 3 ~ 3 A 3 B 3 C 3 D 3  

c) + 
+ ( q -  1 ) z 7 ( A 5 B 3 C 3 D + .  . .) 

U 

+ 

+ e} + 3 ( q -  1 ) z 5 ( A 5 B 3 C 3 D + .  . .) 

+ + ( q - l ) z 5 ( A 5 B 5 C D + . . . )  

+ ( q - l ) z 6 ( A 4 B 4 C 2 D 2 + .  . .) 

I I + I 1 + ( q -  1)z8(A4B4C2D2+ . . . )  

(’ q)+ (-I} -13 (q - l )2z4 (A4B4C’D2+.  . .) 
+ (0 0) 

(0 0) - i ( q -  1)’z4(A4B4C4+.  . .) 

+ ( q  - 1)z6(A4B4C4+.  . .) 
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+ 

+ 

-12(q - 1)*z5A3B3C3D3 

+13(q - 1)z5A3B3C3D3 

+ +10(q-l)z7A3B3C3D3 

I I + ( q  - 1)z9A3B3C3D3 
U 
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